## **FACULTY OF ENGINEERING & TECHNOLOGY**

# First Year Master of Technology

### **Semester II**

Course Code: 102450208

Course Title: OCEAN ENERGY AND TIDAL ENERGY

**Type of Course: Program Elective IV** 

**Course Objectives:** Understand the working of ocean and tidal energy systems.

**Teaching & Examination Scheme:** 

| Contact hours per week |                  |          | Course    | Exam    | ination Ma | arks (Maxi | mum / Pa | assing) |        |  |
|------------------------|------------------|----------|-----------|---------|------------|------------|----------|---------|--------|--|
|                        | Lecture Tutorial |          | Dwagtigal | Credits | Inte       | rnal       | Exte     | rnal    | Total  |  |
|                        | Lecture          | Tutoriai | Fractical |         | Theory     | J/V/P*     | Theory   | J/V/P*  | Total  |  |
|                        | 3                | 2        | 0         | 4       | 30/15      | 20/10      | 70/35    | 30/15   | 150/75 |  |

<sup>\*</sup> J: Jury; V: Viva; P: Practical

**Detailed Syllabus:** 

| Sr. | Contents                                                                           | Hours |  |  |
|-----|------------------------------------------------------------------------------------|-------|--|--|
| 1   | OCEAN ENERGY TECHNOLOGIES:                                                         |       |  |  |
|     | Introduction to Energy form oceans, Oceans energy Resources, Off shore and on-     |       |  |  |
|     | shore oceans energy conversion technology, Advantage and limitation of oceans      |       |  |  |
|     | energy conversion technology, The guide lines for oceans energy conversion plant,  |       |  |  |
|     | Ocean energy routes, High voltage direct current power transmission from Off shore |       |  |  |
|     | oceans energy conversion plant to land based load centers                          |       |  |  |
| 2   | OCEAN THERMAL ENERGY CONVERSION:                                                   | 10    |  |  |
|     | Introduction, Principle of OTEC, Ocean surface temperature, Deep water             |       |  |  |
|     | temperature, Efficiencies of OTEC plants and their influence on plants size, Open  |       |  |  |
|     | cycle, Limitation of Open cycle OTEC system, Historical review of Open cycle OTEC  |       |  |  |
|     | plants, India's first oceans thermal energy conversion, Modified Open cycle OTEC   |       |  |  |
|     | plants, Cogeneration of electricity and fresh water from open cycle OTEC, Closed   |       |  |  |
|     | cycle OTEC                                                                         |       |  |  |
| 3   | OCEAN WAVE ENERGY CONVERSION:                                                      |       |  |  |
|     | Introduction, Ocean waves, Parameters of a progressive wave, Equation of a         |       |  |  |
|     | progressive wave, Energy and power in ocean waves, Summary of Equation Motion      |       |  |  |
|     | of water particles in the waves, Wave data collection, Routes of energy conversion |       |  |  |
|     | of wave energy, Wave machines, Dolphin-buoy type of ocean wave energy converter,   |       |  |  |
|     | Oscillating float-air pump type wave machine Three- raft energy converter, Nodding |       |  |  |
|     | duck Oscillating cam wave machine                                                  |       |  |  |



(Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

| 4 | TIDAL ENERGY CONVERSION:                                                           | 10 |
|---|------------------------------------------------------------------------------------|----|
|   | Introduction tidal Current, High and Low Tides, Tidal Energy conversion, Tidal     |    |
|   | power, Average theoretical Power per tide (rise and fall), Summary of Expressions  |    |
|   | Tidal Work or Energy Conversion, Ocean tidal energy conversion schemes, Terms      |    |
|   | and definitions, Single basin tidal schemes, Double basin scheme and multi basin   |    |
|   | scheme, Details about plant and equipment, Economic aspects about tidal energy     |    |
|   | conversion plant, Tidal power plant in the world, Tidal energy resources in India, |    |
|   | The rance tidal power plants in france, Kislayaguna plants Russia, Interaction     |    |
|   | between tidal power plant and electrical grid                                      |    |

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

| Distribution of Theory Marks |    |    |    |    | S  | R: Remembering; U: Understanding; A: Application, |
|------------------------------|----|----|----|----|----|---------------------------------------------------|
| R                            | U  | A  | N  | E  | С  | N: Analyze; E: Evaluate; C: Create                |
| 20                           | 15 | 25 | 15 | 10 | 15 |                                                   |

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

#### **Reference Books:**

| 1 | Renewable Energy Sources and Emerging Technologies , D. P. Kothari, K. C. Singal, Rakesh |  |  |  |  |  |
|---|------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | Ranjan, PHI Learning Private Limited, New Delhi                                          |  |  |  |  |  |
| 2 | Alternative Energy Resources: The Quest for Sustainable Energy, Paul Kruger.             |  |  |  |  |  |
| 3 | Non-conventional Energy Sources, S.Hasan Saeed, Sharma, D K. S.K. Kataria & Sons.        |  |  |  |  |  |

**Course Outcomes (CO):** 

| Sr.  | Course Outcome Statements                             |      |  |  |
|------|-------------------------------------------------------|------|--|--|
| CO-1 | Understanding of ocean and tidal energy system        | 30 % |  |  |
| CO-2 | To know the ocean and tidal energy conversion system. | 55 % |  |  |
| CO-3 | Ability to evaluate tidal energy conversion systems   | 15 % |  |  |

## **List of Practicals / Tutorials:**

| 1  | To study present scenario of the ocean and tidal energy power generation in India and across |  |  |  |
|----|----------------------------------------------------------------------------------------------|--|--|--|
|    | the globe.                                                                                   |  |  |  |
| 2  | To study different ocean energy technologies.                                                |  |  |  |
| 3  | Performance analysis of the hydraulic turbines.                                              |  |  |  |
| 4  | 4 Performance analysis of the hydraulic pumps.                                               |  |  |  |
| 5  | To study different ocean thermal energy conversion systems.                                  |  |  |  |
| 6  | Co-generation in the ocean thermal energy conversion systems.                                |  |  |  |
| 7  | To study ocean wave energy conversion systems.                                               |  |  |  |
| 8  | To study different wave machines.                                                            |  |  |  |
| 9  | To study different Tidal Energy conversion system.                                           |  |  |  |
| 10 | 10 Economic aspects of ocean and tidal energy conversion systems.                            |  |  |  |

## **Supplementary learning Material:**



| - | (Established under Gujarat Private Universities           |
|---|-----------------------------------------------------------|
|   | (Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019) |

| Curriculum Revision:           |        |  |  |  |
|--------------------------------|--------|--|--|--|
| Version:                       | 1      |  |  |  |
| Drafted on (Month-Year):       | Apr-20 |  |  |  |
| Last Reviewed on (Month-Year): | Jul-20 |  |  |  |
| Next Review on (Month-Year):   | Apr-22 |  |  |  |