FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester II

Course Code: 102450203

Course Title: WIND ENERGY SYSTEMS

Type of Course: Core Course V

Course Objectives: To impart knowledge on wind energy systems, components and able to design systems for wind energy conversion.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Pas			ssing)	
Lastuma	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30/15	20/10	70/35	30/15	150/75

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Wind Energy – Fundamentals and Applications:	10
	Introduction, Application and Historical background, Merits and Limitations,	
	Nature and Origin of Wind, Wind Energy Quantum, Variables in Wind Energy	
	Conversion Systems, Wind Power Density, Power in a Wind Stream, Wind Turbine	
	Efficiency, Power of a Wind Turbine, Forces on the Blade of a Propeller, Wind	
	Velocities and Height from Ground, Mean Wind Velocity, Wind Velocity duration	
	curve, Energy Pattern Factor, Wind Power duration Characteristics	
2	Wind Turbine- Generator Units:	10
	Introduction, Various terms and definitions, Types of Wind Turbine	
	Generator(WTG) Units, Planning of a Wind Farm, Horizontal Axis Propeller type	
	Wind Turbine Generator, Three Blade Horizontal Axis Wind Turbine(HAWT),	
	Dimensioning of Horizontal Axis Wind Turbine, Vertical Axis Wind Turbine,	
	Vertical Axis Darrieus Rotor Wind Turbine, Vertical Axis Wind Turbine with H-	
	Rotor, Wind Turbine Rotor Speed, Practical PV Characteristics, Power Coefficients	
	Versus Tip Speed Ratio, Operation and Control of a HAWT, Economic Consideration	

3	Wind Energy Farm and Energy Conversion System:	10
	Wind to Electric Energy Conversion System, Power versus Velocity of WTG, Power	
	Duration Curves Types of Wind Energy System, Wind to Electrical Energy	
	Conversion Alternatives, Grid Connection, Energy Storage Requirements with Wind	
	Energy System, Hybrid wind energy systems, Economics of wind Energy-	
	fundamental of economics, Initial cost of wind energy project-cost of turbine-	
	installation-transportation-grid connection-legal and other cost, Operating cost-	
	running cost-maintenance cost, Comparison with other energy sources, Cost per	
	unit-case study.	
4	Offshore Wind Energy power	9
	Introduction, offshore wind energy technology, future technological development,	
	scenario for the future offshore development of wind power, new offshore	

concepts, National Offshore Wind Energy Policy of India-development in India, maritime zones-challenges-objectives-geographical coverage-essential components

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

of development offshore wind energy.

66							
Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,		
R	U	A	N	E C		N: Analyze; E: Evaluate; C: Create	
15	20	30	15	10	10		

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

ICI	crence books.
1	Wind turbines: fundamentals, technologies, application, economics, Hau E, von Renouard H,
	Springer.
2	Wind energy handbook, Burton T, Jenkins N, Sharpe D, Bossanyi E., John Wiley and Sons.
3	Advances in wind energy and conversion technology, Mathew S, Philip GS, Berlin, Springer.
4	Wind energy systems, Johnson GL., Englewood Cliffs (NJ): Prentice-Hall.
5	Aerodynamics of wind turbines, Hansen MO, Routledge,

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	To know the wind energy conversion system.	26%
CO-2	Students able to know and demonstrate the wind turbine system.	26%
CO-3	Students able to design of aerofoil blade for wind systems.	26%
CO-4	Students able to know the offshore wind energy technology.	22%

List of Practicals / Tutorials:

1	Study of Fundamentals of wind energy
2	To Study Energy and power in the wind
3	Study of Horizontal Axis Wind Turbine
4	Study of Vertical Axis Wind Turbine
5	To Study Wind Energy Farm
6	Study of Energy Storage Requirements

	(Established ur	nder Gujara	ıt Private	Univers	sities
(Seco	and Amendment)	Act: 2019	Gujarat /	Act No.	20 of 2019)

7	To study Offshore wind energy farm
8	Measurement of power of installed wind mill
9	Case study: Site survey of wind energy and turbine matching
10	Design of 100 W wind mill

Supplementary learning Material:

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		