FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester II

Course Code: 102450202

Course Title: SOLAR PHOTOVOLTAIC POWER PLANTS: PLANNING, DESIGN

AND BALANCE OF SYSTEMS

Type of Course: Core Course IV

Course Objectives:

Teaching & Examination Scheme:

Contact hours per week			Course	Exam	ination Ma	arks (Maxi	mum / Pa	ssing)
Lagtura	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30/15	20/10	70/35	30/15	150/75

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

DCu	ineu synabus:	
Sr.	Contents	Hours
1	INTRODUCTION:	5
	Power Plant Scenario - Classification, Basic Principles and Features - Comparison	
	and selection Criteria.	
2	PHOTOVOLTAIC BASICS:	8
	Structure and working of Solar Cells - Types, Electrical properties and Behaviour of	
	Solar Cells - Cell properties and design - PV Cell Interconnection and Module	
	Fabrication - PV Modules and arrays - Basics of Load Estimation.	
3	STAND ALONE PV SYSTEMS:	9
	Schematics, Components, Batteries, Charge Conditioners - Balance of system	
	components for DC and/or AC Applications - Typical applications for lighting, water	
	pumping etc.	
4	GRID CONNECTED PV SYSTEMS:	5
	Schematics, Components, Charge Conditioners, Interface Components - Balance of	
	system Components - PV System in Buildings.	
5	HYBRID SYSTEMS:	7
	Solar, Biomass, Wind, Diesel Hybrid systems - Comparison and selection criteria for	
	a given application.	
6	DESIGN OF PV SYSTEMS:	5
	Radiation and load data - Design of System Components for different PV	
	Applications - Sizing and Reliability - Simple Case Studies.	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,		
R	U	Α	N	E	С	N: Analyze; E: Evaluate; C: Create	
16	20	23	13	14	14		

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Solar Photovotaics – Fundamentals, Technologies and Applications, CS Solanki, PHI Learning			
	Pvt. Ltd			
2	Solar Cells Operating Principles, Technology, and System Applications Martin A. Green,			
	Prentice- Hall, 2008.			
3	The Physics of Solar Cells, Nelson, J. Imperial College.			
4	Solar Electricity, Thomas Markvart, John Wiley and Sons.			
5	Applied Photovoltaics Stuart R. Wenham, Martin A. Green, Muriel E. Watt, Richard Corkish			
	(Editors), Earthscan.			
6	The Solar Electricity Handbook, Michael Boxwell, Code Green Publishing.			
7	Solar Power Your Home for Dummies, Rik DeGunther, Wiley Publishing.			
8	Photovoltaics: Design and Installation Manual, Published by Solar Energy International.			

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the concept of solar photovoltaic systems based power	23%
	plant.	
CO-2	To know the basic construction of PV cell.	17%
CO-3	Students able to demonstrate the stand alone system and hybrid system.	34%
CO-4	Students able to design of various PV-interconnected systems.	26%

List of Practicals / Tutorials:

1	Measurement of solar radiation using pyranometer.			
2	To study the voltage and current of the solar cell in series combination.			
3	To find PV device characterization.			
4	To study the PV based hybrid system.			
5	Performance on standalone PV system.			
6	Study of Solar photovoltaic power plants.			
7	Performance of solar photovoltaic power plants.			
8	Performance of Solar Pump.			
9	Estimate the load calculation of house (Case study).			
10	Find out the No of panels required for estimated load.			
11	Study of PV-T system.			
12	To study Effect of shadow on solar PV panel.			

Supplementar	y learning Material:		

(Established under Gujarat Private Universities (Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		