FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester I

Course Code: 102450108

Course Title: OPTIMIZATION TECHNIQUES

Type of Course: Program Elective II

Course Objectives: To learn optimization techniques for different experiment condtitions.

Teaching & Examination Scheme:

Contact hours per week			Course Examination Marks (Maximum / Passing)				ssing)	
Locturo	Lecture Tutorial		Credits	Inte	rnal	External		Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	I otal
3	2	0	4	30/15	20/10	70/35	30/15	150/75

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours				
1	LINEAR PROGRAMMING:					
	Statement of optimization problems, principles of single and multi-objective					
	optimization, graphical method, simplex method, revised simplex method, two					
	phase simplex method, duality in linear programming, sensitivity analysis.					
2	NON-LINEAR PROGRAMMING (UNCONSTRAINED OPTIMIZATION):					
	Direct search methods - univariate method, pattern search method, simplex					
	method, descent methods - steepest descent method, conjugate gradient method,					
	Quasi Newton method.					
3	NON-LINEAR PROGRAMMING (CONSTRAINED OPTIMIZATION):					
	Direct methods - The complex method, Zoutendijk's method of feasible directions,					
	Rosen's gradient projection method, indirect method - transformation techniques,					
	basic approach of the penalty function method, interior penalty function method,					
	exterior penalty function method.					
4	DYNAMIC PROGRAMMING:	10				
	Multistage decision process, Suboptimization and principle of optimality,					
	computational procedure, final value problem to initial value problem, linear					
	programming as a case of dynamic programming, continuous dynamic					
	programming.					

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

2 1 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9						
Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,	
R	U	A	N	Е	С	N: Analyze; E: Evaluate; C: Create
20	15	15	15	15	20	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Operations Research: An Introduction, Hamdy A Taha, Pearson Education, New Delhi.
2	Engineering Optimization: Theory and Practice, Singaresu S Rao, New Age International, New
	Delhi.
3	Linear and Nonlinear Programming, Nash S G and Ariela Sofer, McGraw Hill, New York.
4	Optimization Techniques in Operations Research, Gupta C B, I K International, New Delhi.
5	Operations Research: Theory and Applications, Sharma J K, Macmillan Company, New Delhi.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students able to know the linear programming.	40 %
CO-2	Understand the non-linear programming.	30 %
CO-3	Understand the dynamic programming.	30 %

List of Practicals / Tutorials:

1	To study basic concept and application of optimization problem.			
2	To study linear programming and problem formulation in optimization problem.			
3	To study and solve examples for the simplex method.			
4	To study about duality and sensitivity in linear programming.			
5	To study in detail about direct and pattern search methods.			
6	To study and understand descent, conjugate gradient and Quasi Newton method.			
7	To study about direct methods of linear programming.			
8	To study and apply transformation techniques and different penalty function method.			
9	To study about dynamic programming and its computational procedure.			
10	To understand and selecting modern optimization methods with case studies.			

Supplementary learning Material:

Curriculum Revision:				
Version:	1			
Drafted on (Month-Year):	Apr-20			
Last Reviewed on (Month-Year):	Jul-20			
Next Review on (Month-Year):	Apr-22			