FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester I

Course Code: 102450104

Course Title: DISTRIBUTED GENERATION AND MICROGRIDS

Type of Course: Program Elective I

Course Objectives: To provide a insight into grid systems and micro grids.

Teaching & Examination Scheme:

Contact hours per week			Course Examination Marks (Maximum / Passin			ssing)			
Lastuna	Tutovial	Practical	Credits	Inte	rnal	Exte	rnal	Total	
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total	
3	0	2	4	30/15	20/10	70/35	30/15	150/75	

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours			
1	DISTRIBUTED GENERATION: Energy Sources and their availability -trends in	9			
	energy consumption, conventional and non-conventional energy sources – review				
	of solar photovoltaic – wind energy systems – fuel cells, energy storage systems:				
	batteries – ultra capacitors – fly wheels – captive power plants. Distributed				
	generation – concept and topologies, renewable energy in distributed generation.				
	IEEE 1547 Standard for interconnecting distributed generation to electric power				
	systems - DG installations - siting and sizing of DGs - optimal placement -				
	regulatory issues				
2	ISSUES IN GRID INTEGRATION OF DISTRIBUTED ENERGY RESOURCES:	10			
	Basic requirements of grid interconnections – operational parameters – voltage,				
	frequency and THD limits – grid interfaces – inverter based DGs and rotary				
	machines based DGs - reliability, stability and power quality issues on grid				
	integration – impact of DGs on protective relaying and islanding issues in existing				
	distribution grid.				
3	MICROGRIDS:	10			
	Introduction to microgrids – types – structure and configuration of microgrids – AC				
	and DC microgrids - power electronic interfaces for microgrids - energy				
	management and protection control strategies of a microgrid - case studies.				

(Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

4	CONTROL AND OPERATION OF MICROGRID:	10
	Modes of operation and control of microgrid: grid connected and islanded mode,	
	active and reactive power control, protection issues, anti-islanding schemes:	
	passive, active and communication based techniques, microgrid communication	
	infrastructure, power quality issues in microgrids, regulatory standards, microgrid	
	economics, and introduction to smart microgrids.	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks		S	R: Remembering; U: Understanding; A: Application,			
R	U	A	N	N E C		N: Analyze; E: Evaluate; C: Create
20	25	20	15	10	10	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Essentials of Distributed Generation Systems, Gregory W. Massey, Jones & Bartlett Publishers.
2	Integration of Distributed Generation in the Power System Math H. Bollen, John Wiley & Sons.
3	Distributed Generation,N. Jenkins, Nicholas Jenkins, IET Press.
4	Microgrids and Active Distribution Networks, S. Chowdhury, P. Crossley, IET Press.
5	Design of Smart Power Grid Renewable Energy Systems, Ali Keyhani, John Wiley & Sons.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the grid system.	30 %
CO-2	Students able to know the issues in grid integration of distributed	30 %
	energy resources.	
CO-3	Understand the control and operation of micro grids.	25 %
CO-4	Economic analysis for microgrid operational modes with control system	15 %

List of Practicals / Tutorials:

1	Case study on "Energy Sources and their availability -trends in energy consumption".			
2	Review of solar photovoltaic – wind energy systems – fuel cells, energy storage systems.			
3	To study about basic requirements of grid interconnections.			
4	To study about various issues of distributed generation and their Technical impacts on the			
	distribution system.			
5	To study various protection issues with distributed generations.			
6	To study about impact of Distributed Generations (DGs) on protective relaying and			
	islanding issues in existing distribution grid.			
7	Study on Standards for interconnecting distributed generation to electric power systems.			
8	Case study on "Integrating Electric Vehicles to the Grid".			
9	Case study on "Energy management and protection control strategies of a microgrid"			
10	Case study on "Microgrid economics".			

Supplementar	100445	~ Matarial.
Subblemeniar	v iearning	o wateriat:

(Established under Gujarat Private Universities (Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

Curriculum Revision:				
Version:	1			
Drafted on (Month-Year):	Apr-20			
Last Reviewed on (Month-Year):	Jul-20			
Next Review on (Month-Year):	Apr-22			