FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester I

Course Code: 102450102

Course Title: SOLAR ENERGY

Type of Course: Core Course II

Course Objectives: To recognize the basic physics about solar engineering, origin, related devices used to collect solar energy and solar energy utilization systems.

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing)				ssing)	
Lastuna	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30 / 15	20 / 10	70 / 35	30 / 15	150 / 75

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	SOLAR RADIATION MEASUREMENT AND DATA ESTIMATION:	7
	Solar energy measuring equipments-classification, Pyrheliometers, Pyranometers,	
	Sun-shine recorder, Solar radiation data, Estimation of average solar radiation,	
	Estimation of Direct and Diffused radiation-during no cloudy days-during cloudy	
	days, Ratio of Beam radiation on tilted surface to horizontal surface, Ratio of total	
	radiation on tilted surface to a horizontal surface.	
2	SOLAR COLLECTORS:	7
	Flat plate - Evacuated tube - Concentrated - Pool and Air collectors Construction -	
	Function - Suitability – Comparison - Storage Tank - Solar Fluids	
3	SOLAR WATER HEATING SYSTEMS:	7
	Integral Collector Storage System - Thermosyphon System - Open Loop, Drain Down,	
	Drain Back, Antifreeze Systems - Refrigerant Solar Water Heaters - Solar Heated	
	Pools - Solar Heated Hot Tubs.	
4	SOLAR SPACE CONDITIONING SYSTEMS:	6
	Liquid Type Solar Heating System With / Without Storage - Heat Storage	
	Configurations - Heat Delivery Methods - Air-Type Solar Heating Systems - Solar	
	Refrigeration and Air Conditioning.	
5	OTHER SOLAR APPLICATIONS:	6
	Solar Cooking – Distillation - Desalination - Solar Ponds – Solar Passive Architecture	
	– Solar Drying – Solar Chimney.	

	(,
6	SOLAR ECONOMICS:
	Application of economic methods to analyze the feasibility of solar systems to decide

Application of economic methods to analyze the feasibility of solar systems to decide project / policy alternatives - Net energy analysis - and cost requirements for active and passive heating and cooling - for electric power generation - and for industrial process-heating.

6

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,		
R	U	A	N	Е	С	N: Analyze; E: Evaluate; C: Create	
10	20	20	20	20	10		

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Physics and Technology of Solar Energy- Volume I: Solar Thermal Applications,H P Garg, M			
	Dayal, G Furlan, Springer			
2	Solar Energy: Principles of Thermal Collection and Storage, Sukhatme and Nayak, Tata			
	McGraw.Hill.			
3	Solar Water Heating, Bob Ramlow & Benjamin Nusz, New Society Publishing.			
4	Solar Thermal Energy, John Canivan, Sunny Future Press.			
5	Concentrated Solar Thermal Energy, Charles Christopher Newton, VDM Verlag			
6	Solar Thermal Energy Storage, H.P.Garg, S.C.Mullick, A.K.Bhargava, D.Reidal, Springer			
7	Solar Energy Houses: Strategies, Technologies Examples, Anne Grete Hestnes, Robert			
	Hastings, Bjarne Saxhof. Earthscan Publications.			

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage				
CO-1	The impression of various solar thermal energy collectors were clarified. 24 %					
CO-2	The other applications and the devices used to collect solar energy were 16 %					
	incorporated.					
CO-3	The basic economics of solar energy collection system was understood. 16 %					
CO-4	Economic analysis of solar system for feasible projects.					
CO-5	Students able to demonstrate to solar heating system and collectors.					

List of Practicals / Tutorials:

1	Measurement of solar radiation using solar measuring.	
2	Heating and cooling tests on a paraboloid concentrator solar cooker to determine its F'n and	
	F' UL.	
3	To determine the top heat loss factor of a box type solar cooker.	
4	Performance evaluation of solar still.	
5	Determination of thermal efficiency of Solar Water Heater.	
6	Performance the solar water heating system	
7	Performance evaluation of solar air dryer.	
8	Study of solar refrigeration system.	

9	Performance analysis of PV cell with increasing the temperature.
10	Performance evaluation of concentrating solar collector.
11	Study of solar power plant.
12	To study the I-V Characteristics of a Si solar cell with varying temperature at constant
	irradiation.

Supplementary learning Material:

Curriculum Revision:				
Version:	1			
Drafted on (Month-Year):	Apr-20			
Last Reviewed on (Month-Year):	Jul-20			
Next Review on (Month-Year):	Apr-22			