FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester II

Course Code: 102440209

Course Title: Design of Heat Exchangers

Type of Course: Core Course IV

Course Objectives: The course is design to provide fundamental knowledge of different type of heat exchangers used for thermal application.

Teaching & Examination Scheme:

Contac	ct hours pe	er week	Course	Examination Marks (Maximum / Passing)				ssing)
Lastuna	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30/15	20/10	70/35	30/15	150/75

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	BASIC DESIGN METHODOLOGIES	8
	Classification of heat exchanger, selection of heat exchanger, Thermal-Hydraulic	
	fundamentals, Overall heat transfer coefficient, LMTD method for heat exchanger	
	analysis for parallel, counter, multipass and cross flow heat exchanger, e-NTU	
	method for heat exchanger analysis, Fouling, Rating and sizing problems, heat	
	exchanger design methodology	
2	FOULING OF HEAT EXCHANGERS	6
	Basic consideration, effect of fouling on heat transfer and pressure drop, cost of	
	fouling, design of heat exchangers subject to fouling, fouling resistance, cleanliness	
	factor, techniques to control fouling	
3	DESIGN OF DOUBLE PIPE HEAT EXCHANGERS	9
	Thermal and Hydraulic design of inner tube and annulus, hairpin heat exchanger	
	with bare and finned inner tube, total pressure drop	
4	DESIGN OF SHELL & TUBE HEAT EXCHANGERS	9
	Basic components, basic design procedure of heat exchanger, TEMA code, J-factors,	
	conventional design methods, Bell-Delaware method.	
5	DESIGN OF COMPACT HEAT EXCHANGERS	7
	Heat transfer enhancement, plate fin heat exchanger, tube fin heat exchanger, heat	
	transfer and pressure drop	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,	
R	U	Α	N	E	С	N: Analyze; E: Evaluate; C: Create
10%	15%	25%	20%	20%	10%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Heat Exchanger Selection, Rating and Thermal Design by Sadik, Kakac, CRC Press
2	Fundamentals of Heat Exchanger Design by Ramesh K Shah, Wiley Publication
3	Compact Heat Exchangers by Kays, V.A. and London, A.L., McGraw Hill
4	Heat Exchanger Design Handbook by Kuppan, T, Macel Dekker, CRC Press
5	Heat Exchanger Design Hand Book by Schunder E.U., Hemisphere Pub.
6	Process Heat transfer by Donald Q Kern, McGraw Hill

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students able to know the design methodology for heat exchanger.	30
CO-2	Students able to design the double pipe heat exchanger and shell & tube	20
	heat exchanger.	
CO-3	Students able to develop the double pipe heat exchanger and shell &	27
	tube heat exchanger.	
CO-4	Students able to understand the design of compact heat exchanger	23

List of Practicals / Tutorials:

1	Study of basic design methodologies
2	Study of fouling in heat exchangers
3	Study of various types of heat exchangers
4	Design of evaporator for thermal system.
5	Design of condenser for thermal system.
6	Design of heat exchange equipment by using LMTD method.
7	Design of heat exchange equipment by using effectiveness – NTU method.
8	Design and analysis of double pipe heat exchanger with parallel and counter flow
	arrangement
9	Design and analysis of shell and tube type heat exchanger.
10	Design and analysis of plate type heat exchanger.

Sup	plementary learning Material:
1	

Curriculum Revision:		
Version:	1	
Drafted on (Month-Year):	Apr-20	
Last Reviewed on (Month-Year):	Jul-20	
Next Review on (Month-Year)	Apr-22	