FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester II

Course Code: 102440207

Course Title: Thermal Systems Design

Type of Course: Program Elective III

Course Objectives: To familiarize on design methodologies of thermal systems and

facilitate analysis and optimization for performance enhancement.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)				ssing)
Lastura	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	40 /16	20/08	60 /24	30/12	150/60

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours		
1	THERMAL SYSTEMS	10		
	Energy systems, heat exchangers – classification, review of different design			
	methodologies, pressure drop analysis, thin fin analysis, fouling, corrosion, and			
	erosion, design and operational issues, exergy analysis, surface comparisons, size			
	and weight relationships.			
2	MODELLING OF THERMAL SYSTEMS	12		
	Design of energy systems- mathematical analysis - thermodynamic modeling and			
	analysis of energy conversion equipments - heat exchangers, motors, fans, pumps,			
	compressors, turbines, piping, ducts, etc. and efficiency analysis.			
3	HEAT TRANSFER ENHANCEMENT TECHNIQUES	8		
	Flow distribution and header design, reduction of non-uniform heat transfer in heat			
	exchangers, reduction of fouling, role of pitch analysis in a thermal system.			
4	WASTE HEAT RECOVERY SYSTEMS	9		
	Sources of waste heat, selection of waste heat recovery technologies and financial			
	considerations, design aspects of waste heat recovery systems.			
5	Click or tap here to enter text.	Click		
6	Click or tap here to enter text.	Click		
7	Click or tap here to enter text.	Click		
8	Click or tap here to enter text.	Click		
9	Click or tap here to enter text.	Click		
10	Click or tap here to enter text.	Click		
11	Click or tap here to enter text.	Click		

(Established under Gujarat Private Universities (Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

12	Click or tap here to enter text.	Click
13	Click or tap here to enter text.	Click
14	Click or tap here to enter text.	Click
15	Click or tap here to enter text.	Click

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,	
R	U	A	N	E	С	N: Analyze; E: Evaluate; C: Create
10%	15%	30%	20%	20%	05%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1101	erence books.
1	Design of Thermal Systems, Stoecker W G, McGraw Hill, 2011.
2	Developments in the Design of Thermal Systems, Robert F Boehm, Cambridge University Press, 2016.
3	Fundamentals of Heat Exchanger Design, Ramesh K Shah and Dusan P Sekulic, Wiley Publications, 2007.
4	Heat Transfer Enhancement of Heat Exchangers, Sadik Kakac and Hongtanliu, Kluwer academic publishers, 1998.
5	Principles of Enhanced Heat Transfer, Ralph L WebbandNae – Hywn Kim, Taylor and Francis, 2005.
6	Click or tap here to enter text.
7	Click or tap here to enter text.
8	Click or tap here to enter text.
9	Click or tap here to enter text.
10	Click or tap here to enter text.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Students able to know the design and operational issues of thermal system.	25
CO-2	Students able to understand the modelling of the thermal system.	35
CO-3	Students able to perform the enhance heat transfer techniques	20
CO-4	Students able to identify the waste heat source and design the waste heat	20
	recovery system.	
CO-5	Click or tap here to enter text.	Click
CO-6	Click or tap here to enter text.	Click
CO-7	Click or tap here to enter text.	Click
CO-8	Click or tap here to enter text.	Click
CO-9	Click or tap here to enter text.	Click
CO-10	Click or tap here to enter text.	Click

List of Practicals / Tutorials:

Click or tap here to enter text.

1	To study thermal aspects of heat exchanger design	
2	Design and experimental analysis of double pipe Heat exchanger	
3	To study about basic design methodologies and fouling of Heat exchangers	
4	Study of Tinkers model & TEMA standards	
5	Study of Bell Deware's method for shell and tube type heat exchanger design	
6	Analysis and design regenerative heat exchanger	
7	Design of compact heat exchanger	
8	Design and experimental analysis of plate type heat exchanger	
9	To study about Heat exchange networking	
10	To study about various heat recovery systems	
11	Click or tap here to enter text.	
12	Click or tap here to enter text.	
13	Click or tap here to enter text.	
14	Click or tap here to enter text.	
15	Click or tap here to enter text.	

Sup	Supplementary learning Material:		
1	Click or tap here to enter text.		
2	Click or tap here to enter text.		
3	Click or tap here to enter text.		
4	Click or tap here to enter text.		
5	Click or tap here to enter text.		

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		