FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester II

Course Code: 102440203

Course Title: Experimental Techniques and Instrumentations for Engineers

Type of Course: Core Course V

Course Objectives: This subject is designed to provide knowledge of different experiment techniques and instruments used for thermal engineering applications.

Teaching & Examination Scheme:

Contac	Contact hours per week		Course	Examination Marks (Maximum / Passing)			ssing)	
Locturo	Tutorial	Practical	Credits	Inte	rnal	External		Total
Lecture	Tutoriai			Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	40/16	20 /08	60 /24	30 /12	150 /60

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours				
1	BASIC CONCEPTS	3				
	Definition of terms, Calibration, System response, Important of experimental					
	analysis, Experiment planning, TAGUCHI method.					
2	DESIGN OF EXPERIMENT	6				
	Statistical design of experiments, strategy of experimentation, guideline for					
	designing of experiments, Factorial design, concept of two level, Fractional Factorial					
	design, Analysis of variance.					
3	ANALYSIS OF EXPERIMENTAL DATA	8				
	Causes and type of experimental errors, Uncertainty analysis, Statistical analysis of					
	experimental data, Distributions, estimators, confidence levels, sample size, test of					
	hypothesis, Goodness-of-fit test Chauvenet's criteria; Regression analysis, co-					
	relations.					
4	MEASURING SYSTEMS	8				
	Selection of measuring system, static & dynamic characteristics, Response of general					
	form of instrument, random and transient input, instrument loading under static and					
	dynamic condition, transducer and sensor, measurement of strain, noise, pressure,					
	temperature, velocity, flow rate, level, speed, force, torque, noise and chemical					
	analyses.					
5	ADVANCED MEASUREMENT TECHNIQUES	8				
	Shadowgraph, Schlieren, Interferometer, Laser Doppler Anemometer, Hot wire					
	Anemometer, Telemetry in measurement, Orsat apparatus, Gas Analyzers, Smoke					
	meters, gas chromatography, spectrometry					

CONTROL SYSTEMS 6 Types, block diagrams and performance analysis, signal flow graphs, Hydraulic, Pneumatic and electronic controllers, Transient and steady state response; time domain and Laplace transform representation of P, P + D & P + I control action; frequency response analysis and stability of control systems; applications, Programmable Logical Controllers-programming, applications. 7 Click or tap here to enter text. Click Click or tap here to enter text. 8 Click Click or tap here to enter text. 9 Click **10** Click or tap here to enter text. Click 11 Click or tap here to enter text. Click Click Click or tap here to enter text. **12 13** Click or tap here to enter text. Click **14** Click or tap here to enter text. Click **15** Click or tap here to enter text. Click

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,	
R	U	Α	A N E C		С	N: Analyze; E: Evaluate; C: Create
10 %	20%	25%	20 %	20%	05%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1101	erence books.
1	Mechanical Measurements, T.G. Beckwith, J.H. Lienhard V, R. D. Marngoni, Pearson Publication.
2	Experiments: Planning, Analysis, and Optimization, C. F. Jeff Wu, Michael S. Hamada, Wiley Publication
3	Measurement systems, Application and Design, E O Doebelin, McGraw-Hill
4	Measurements and Instrumentation in Heat Engineering, Prebrashensky V, MIR Publishers.
5	Experimental Methods for Engineers, J P Holman, McGraw-Hill.
6	Instrumentation Devices and Systems, Raman C S, Sharma G R, Mani V S N, McGrawHill.
7	Principles of Measurements and Instrumentation, Morris AS, Prentice Hall of India
8	Measurement Techniques in Heat Transfer, E R G Eckert and Goldsteen, Technovision
9	Mechanical and Industrial Measurements, R K Jain, Khanna Publishers
10	Experimentation and Uncertainty Analysis for Engineers, Huge W Coleman, W Glenn Steele, John Wiley & Sons.
$\overline{}$	

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Understand the concept and design of various experiment techniques.	18
CO-2	Students able to know the various measuring techniques.	34
CO-3	Understanding of the various control systems.	18
CO-4	Students able to analysis the experimental techniques.	
CO-5	Click or tap here to enter text.	
CO-6	Click or tap here to enter text.	
CO-7	7 Click or tap here to enter text. Click	
CO-8	Click or tap here to enter text.	
CO-9	Click or tap here to enter text.	Click
CO-10	Click or tap here to enter text.	Click

List of Practicals / Tutorials:

Click or tap here to enter text.

1	To study and understand basic concepts of calibration and importance of experimental analysis.			
2	To study about design of experiments and to select appropriate techniques.			
3	To perform experiment with any thermal system and to carry out uncertainty analysis for the same.			
4	To calibrate and measure temperature using thermocouple, RTD.			
5	To carry out calibration of pressure measuring devices: U-tube manometer, pressure gauge.			
6	To measure the thermal conductivity of any fluid.			
7	To carry out calibration of flow measuring devices: orifice meter, rotameter and venturimeter.			
8	To carry out exhaust gas analysis with gas chromatographer.			
9	To study and compare various advanced measurement techniques.			
10	To study various electronics controllers used in thermal measurements.			
11	Click or tap here to enter text.			
12	Click or tap here to enter text.			
13	Click or tap here to enter text.			
14	Click or tap here to enter text.			
15	Click or tap here to enter text.			

Sup	Supplementary learning Material:				
1	Click or tap here to enter text.				
2	Click or tap here to enter text.				
3	Click or tap here to enter text.				
4	Click or tap here to enter text.				
5	Click or tap here to enter text.				

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		