

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102440108

Course Title: Fuels, Combustion & Environment

Type of Course: Program Elective II

Course Objectives: This subject is designed to provide knowledge of combustion

phenomenon and different types of fuels.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)			ssing)	
Lastuma	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	40 /16	20 /08	60 /24	30 /12	150 /60

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours		
1	FUELS	6		
	Detailed classification – Conventional and Unconventional Solid, Liquid, gaseous			
	fuels and nuclear fuels - Origin of Coal - Analysis of coal. Coal - Carburization,			
	Gasification and liquification – Lignite: petroleum based fuels – problems associated			
	with very low calorific value gases: Coal Gas – Blast Furnace Gas Alcohols and Biogas.			
2	PRINCIPLES OF COMBUSTION	7		
	Chemical composition – Flue gas analysis – dew point of products – Combustion			
	stoichiometry. Chemical kinetics – Rate of reaction – Reaction order – Molecularity			
	- Zeroth, first, second and third order reactions - complex reactions - chain			
	reactions. Theories of reaction Kinetics – General oxidation behavior of HC's			
3	IMPORTANT CHEMICAL MECHANISMS	6		
	The H2-O2 system, Carbon monoxide Oxidation, Oxidation of Higher Paraffin,			
	Methane Combustion, Oxides of Nitrogen Formation.			
4	LAMINAR AND TURBULENT FLAMES PROPAGATION AND STRUCTURE	12		
	Physical Description, Simplified analysis –Flame stability – Burning velocity of fuels			
	- Measurement of burning velocity - factors affecting the burning velocity.			
	Combustion of fuel, droplets and sprays – Definition of Turbulent Flame Speed –			
	Structure of Turbulent Premixed Flames - Turbulent Nonpremixed Flames-			
	Combustion systems – Pulverized fuel furnaces – fixed, Entrained and Fluidized Bed			
	Systems.			
5	ENVIRONMENTAL CONSIDERATIONS	8		
	Air pollution – Effects on Environment, Human Health etc. Principal pollutants –			
	Legislative Measures – Methods of Emission control			

6	Click or tap here to enter text.	Click
7	Click or tap here to enter text.	Click
8	Click or tap here to enter text.	Click
9	Click or tap here to enter text.	Click
10	Click or tap here to enter text.	Click
11	Click or tap here to enter text.	Click
12	Click or tap here to enter text.	Click
13	Click or tap here to enter text.	Click
14	Click or tap here to enter text.	Click
15	Click or tap here to enter text.	Click

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,	
R	U	A	N	E	С	N: Analyze; E: Evaluate; C: Create
10%	30%	25%	20%	10%	05%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

IVCI	erence books:			
1	Combustion Fundamentals, Roger A Strehlow, McGraw-Hill			
2	Fuels and Combustion, Sharma and Chander Mohan, Tata McGraw-Hill			
3	Combustion Engineering and Fuel Technology, Shaha A.K., Oxford and IBH			
4	Principles of Combustion, Kenneth Kuan-yun Kuo, Wiley			
5	Fuel and Combustion, Samir Sarkar, Universities Press			
6	An Introduction to Combustion: Concepts and Applications, Stephen R. Turns, McGraw Hill			
	Education			
7	Combustion Engineering, Gary L. Berman & Kenneth W. Ragland, McGraw-Hill			
8	Click or tap here to enter text.			
9	Click or tap here to enter text.			
10	Click or tap here to enter text.			

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage		
CO-1	Understanding of thermodynamics and kinetics of combustion	20		
CO-2	Students able to apply the principles of combustion	25		
CO-3	Understanding of the laminar and turbulent flames propagation and structure 35			
CO-4	Effect of the fuel combustion on the environmental emissions			
CO-5	Click or tap here to enter text.	Click		
CO-6	Click or tap here to enter text.	Click		
CO-7	Click or tap here to enter text.	Click		
CO-8	Click or tap here to enter text.	Click		
CO-9	Click or tap here to enter text.			
CO-10	Click or tap here to enter text.			

List of Practicals / Tutorials:

Click or tap here to enter text.

1	To study various types of fuels	
2	Study of Carburisation coal	
3	Study of Gasification of coal	
4	Study of liquification of coal	
5	Study of combustion stoichiometry	
6	Study of rate of reaction and reaction order	
7	To study enthalpy formation	
8	Study of burning velocity of fuel	
9	To study different combustion systems	
10	Study of environmental consideration	
11	Click or tap here to enter text.	
12	Click or tap here to enter text.	
13	Click or tap here to enter text.	
14	Click or tap here to enter text.	
15	Click or tap here to enter text.	

Sup	Supplementary learning Material:			
1	Click or tap here to enter text.			
2	Click or tap here to enter text.			
3	Click or tap here to enter text.			
4	Click or tap here to enter text.			
5	Click or tap here to enter text.			

Curriculum Revision:		
Version:	1	
Drafted on (Month-Year):	Apr-20	
Last Reviewed on (Month-Year):	Jul-20	
Next Review on (Month-Year):	Apr-22	