FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102440107

Course Title: Energy Storage Systems

Type of Course: Program Elective II

Course Objectives: To provide an insight into the various modes of energy storage. To impart knowledge on construction, working principle and performance analysis of electrochemical, electric and thermal storage systems

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing)			ssing)		
Lecture Tutorial	Dwagtigal	Credits	Inte	rnal	Exte	rnal	Тодо	
Lecture	Lutoriai Pr	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	40 /16	20 /08	60 /24	30 /12	150 /60

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours					
1	ENERGY STORAGE MODES	10					
	Potential energy, Pumped hydro storage; KE and Compressed gas system: Flywheel						
	storage, compressed air energy storage; Electrical and magnetic energy storage:						
	Capacitors, electromagnets; Chemical Energy storage: Thermo-chemical, photo-						
	chemical, bio-chemical, Superconducting Magnet Energy Storage (SMES) systems.						
2	ELECTROCHEMICAL ENERGY STORAGE SYSTEMS	10					
	Batteries- primary, secondary, Lithium; Solid-state and molten solvent batteries;						
	Lead acid batteries; Nickel Cadmium batteries; Advanced batteries, Role of carbon						
	nano-tubes in electrodes						
3	ELECTRIC ENERGY STORAGE SYSTEMS	10					
	Capacitor and Batteries: Comparison and application; Super capacitor:						
	Electrochemical Double Layer Capacitor (EDLC), principle of working, structure,						
	performance and application, role of activated carbon and carbon nano-tube.						
4	SENSIBLE AND LATENT HEAT STORAGE	9					
	SHS mediums; Stratified storage systems; Rock-bed storage systems; Thermal						
	storage in buildings; Earth storage; Energy storage in aquifers, Phase Change						
	Materials (PCMs); Selection criteria of PCMs; solar thermal LHTE systems.						
5	Click or tap here to enter text.	Click					
6	Click or tap here to enter text.	Click					
7	Click or tap here to enter text.	Click					
8	Click or tap here to enter text.	Click					

(Established under Gujarat Private Universities (Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

9	Click or tap here to enter text.			
10	10 Click or tap here to enter text.			
11	Click or tap here to enter text.	Click		
12	Click or tap here to enter text.	Click		
13	Click or tap here to enter text.	Click		
14	Click or tap here to enter text.	Click		
15	Click or tap here to enter text.	Click		

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

- 100 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								
Distribution of Theory Marks					S	R: Remembering; U: Understanding; A: Application,		
R	R U A N E C		С	N: Analyze; E: Evaluate; C: Create				
10%	30%	30%	20%	10%	0%			

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

IVCI	ierence books:			
1	Thermal Energy Storage Systems and Applications, Ibrahim Dincer and Mark A Rosen, Wiley			
2	Fuel cell systems Explained, James Larminie and Andrew Dicks, Wiley Publications			
3	Electrochemical technologies for energy storage and conversion, Ru-shiliu, Leizhang, Xueliang			
	sun, Wiley Publications			
4	Energy storage, Yves Brunet. Wiley Publication			
5	Advances in thermal energy storage systems, Luisa F.Cabeza., Woodhead publications			
6	Click or tap here to enter text.			
7	Click or tap here to enter text.			
8	Click or tap here to enter text.			
9	Click or tap here to enter text.			
10	Click or tap here to enter text.			

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage		
CO-1	Students able to understand the need of energy conversion and the	15		
	various methods of energy storage			
CO-2	Students able to understand the principle of electro chemical and	25		
	electrical energy storage system			
CO-3	Students able to demonstrate the mechanical, electro chemical and	25		
	electrical energy storage system			
CO-4	Students able to identify available technologies and materials for energy	20		
	storage and their typical application areas			
CO-5	Students able to summarize the demand for further development,	15		
	potential improvements and possibilities for innovative solutions in the			
	energy storage field			
CO-6	Click or tap here to enter text.	Click		
CO-7	Click or tap here to enter text.	Click		
CO-8	Click or tap here to enter text.	Click		
CO-9	Click or tap here to enter text.			
CO-10	Click or tap here to enter text.			

List of Practicals / Tutorials:

Click or tap here to enter text.

1	Study of Battery charging and discharging characteristics			
2	Combine AC and DC load system with battery			
3	Evaluation of heat transfer during charging and discharging of Phase Change Material (PCM)			
4	Inspection of temperature distribution inside the PCM			
5	Evaluation of system thermal efficiency during charging storing and discharging the PCM			
6	Evaluation of overall system thermal efficiency			
7	Study of electrochemical storage system			
8	Study of electric storage system			
9	Study of thermal energy storage in building			
10	Study of Superconducting Magnet Energy Storage (SMES) systems			
11	Click or tap here to enter text.			
12	Click or tap here to enter text.			
13	Click or tap here to enter text.			
14	Click or tap here to enter text.			
15	Click or tap here to enter text.			

Sup	Supplementary learning Material:				
1	Click or tap here to enter text.				
2	Click or tap here to enter text.				
3	Click or tap here to enter text.				
4	Click or tap here to enter text.				
5	Click or tap here to enter text.				

Curriculum Revision:		
Version:	1	
Drafted on (Month-Year):	Apr-20	
Last Reviewed on (Month-Year):	Jul-20	
Next Review on (Month-Year):	Apr-22	