FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102440103

Course Title: Gas Turbines and Jet Propulsion

Type of Course: Program Elective I

Course Objectives: The course aims at providing the knowledge of gas turbines

and jet propulsion related systems.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passing)			ssing)	
Logtuno	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	40 /16	20 /08	60 /24	30 /12	150/60

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	COMPRESSIBLE FLOW	7
	Wave propagation and sound velocity; Mach number and compressible flow	
	regimes; basic equations for one-dimensional compressible flow, isentropic flow	
	relations; area-velocity relation; normal shock waves, relation between upstream	
	and downstream flow parameters.	
2	GAS TURBINE SYSTEMS AND CYCLES	7
	System of operation of gas turbines-constant volume and constant pressure gas	
	turbines; thermodynamics of Brayton cycle; regeneration-intercooling, reheating	
	and their combinations; closed cycle and semiclosed cycle gas turbines; gas v/s I.C	
	engines and steam turbines.	
3	COMPRESSORS	9
	Classification-positive displacement and dynamic compressors, Operation of single	
	stage reciprocating compressors; best value of index of compression; isothermal	
	efficiency; effect of clearance and volumetric efficiency; multi-stage compression; air	
	motors. Centrifugal compressors; static and total head values; velocity vector	
	diagrams; slip factor; pressure coefficient and pre-whirl, Axial flow compressors;	
	degree reaction and polytropic efficiency Performance characteristics; surging,	
	choking and stalling.	
4	COMBUSTION SYSTEMS	4
	Types, combustion process, combustion intensity efficiency and pressure loss.	
5	AIR-BREATHING PROPULSION SYSTEMS	6
	Principle of jet propulsion; analysis and performance characteristics of turbojet,	
	turboprop, ramjet and pulsejet; thrust power and propulsion efficiency	

6	ROCKET PROPULSION			
	Operating principle; solid and liquid propellants, performance analysis-calculations			
	for specific impulse and propulsive efficiency			
7	Click or tap here to enter text.	Click		
8	Click or tap here to enter text.	Click		
9	Click or tap here to enter text.	Click		
10	Click or tap here to enter text.	Click		
11	Click or tap here to enter text.	Click		
12	Click or tap here to enter text.	Click		
13	Click or tap here to enter text.	Click		
14	Click or tap here to enter text.	Click		
15	Click or tap here to enter text.	Click		

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,		
R	U	Α	N	E	С	N: Analyze; E: Evaluate; C: Create	
10%	20%	30%	25%	10%	5%		

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1101	CI CIICC BOOKS.		
1	Gas Turbine Theory by H Cohen & GFC Rogers, Pearson Publication		
2	Principle of Jet Propulsion and Gas Turbine by Zucrow M J, John Wiley & Sons		
3	Rocket Propulsion Elements by George P. Sutton, Wiley		
4	Fundamentals of Compressible Flow by S. M.Yahya, New Age International Pvt Ltd		
5	Gas Turbines and Propulsive Systems by Khajuria P. R, Dhanpat Rai Publishing Co Pvt Ltd		
6	Click or tap here to enter text.		
7	Click or tap here to enter text.		
8	Click or tap here to enter text.		
9	Click or tap here to enter text.		
10	Click or tap here to enter text.		

Course Outcomes (CO):

Sr.	Course Outcome Statements %v			
CO-1	Students able to understand the importance of compressible flow in gas	20		
	turbine and jet propulsion			
CO-2	Students able to identify the compressor system for gas turbine and jet propulsion system	20		
CO-3	Students able to know the combustion system used in gas turbine and jet propulsion	25		
CO-4	Students able to understand the working principle of jet and rocket propulsion systems			
CO-5	Students able to performance analysis of various propulsion system	15		
CO-6	Click or tap here to enter text.	Click		
CO-7	Click or tap here to enter text.	Click		
CO-8	Click or tap here to enter text.	Click		
CO-9	Click or tap here to enter text.	Click		
CO-10	Click or tap here to enter text.	Click		

List of Practicals / Tutorials:

Click or tap here to enter text.

1	To Study Gas Turbine system, centrifugal and axial flow	
2	To Study Gas turbine cycle with reheat cycle	
3	To Study Centrifugal Compressors and Radial flow turbines	
4	To Study gas turbine power cycles	
5	To Study Axial and centrifugal Compressors	
6	To Study Turboprop engines and propellers	
7	To Study Introduction to Aircraft (Jet) Propulsion	
8	To Study Combustion Systems, Intakes and Propelling Nozzles	
9	To Study Ramjets, Pulsejets and Scramjets	
10	To Study Rocket Propulsion	
11	Click or tap here to enter text.	
12	Click or tap here to enter text.	
13	Click or tap here to enter text.	
14	Click or tap here to enter text.	
15	Click or tap here to enter text.	

Sup	Supplementary learning Material:		
1	Click or tap here to enter text.		
2	Click or tap here to enter text.		
3	Click or tap here to enter text.		
4	Click or tap here to enter text.		
5	Click or tap here to enter text.		

Curriculum Revision:		
Version:	1	
Drafted on (Month-Year):	Apr-20	
Last Reviewed on (Month-Year):	Jul-20	
Next Review on (Month-Year):	Apr-22	