FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102440101

Course Title: Advanced Heat Transfer

Type of Course: Core Course I

Course Objectives: The course is prepared to provide understanding of multidimensional heat transfer analysis for steady and transient condition. The present course also helps to learn about volumetric radiation.

Teaching & Examination Scheme:

Contact hours per week		Course	Examination Marks (Maximum / Passing			ssing)		
Lastura	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	40 / 16	20 /08	60 /24	30 /12	150 /60

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus

Sr.	Contents	Hours		
1	HEAT CONDUCTION	8		
	Steady, one dimensional heat conduction equation with heat generation in different			
	geometries - plane wall and cylinder with uniform heat generation, applications,			
	heat transfer in common configurations, conduction shape factor. Steady two			
	dimensional heat conduction: solution by method of separation of variables.			
	Extended surfaces heat transfer: different fin geometries, differential equation for			
	fin of variable cross sections, solution of fin equation for different boundary			
	conditions, fin performance			
2	TRANSIENT CONDUCTION	8		
	Lumped system analysis, transient conduction in various geometries, one term			
	approximate solutions, use of Heisler and Grober charts, semi-infinite solids,			
	transient conduction in multi-dimensional systems: product solution for transient			
	conduction in various geometries, Conduction with phase change - integral method,			
	solidification and melting - numerical methods			
3	CONVECTION	12		
	Inclined and horizontal plates – the flow pattern and heat transfer, heat transfer from upper			
	and lower surfaces of heated or cooled palates, tubes, vertical and inclined channels,			
	enclosures, combined free and forced convection.			
	General review, Laminar Flow: a similarity solution, Turbulent flow, mixed			
	boundary layer conditions, flow across cylinders and spheres, Momentum and			
	energy equation, tube banks - inline and staggered arrangement, packed beds,			
	introduction to compact heat exchangers, convection heat and mass transfer			

RADIATION 8 Review of radiation principles - laws of thermal radiation - surface properties radiative heat exchange among diffuse, gray and non-gray surfaces separated by non-participating media - gas radiation and radiation transfer in enclosures containing absorbing and emitting media - interaction of radiation with conduction and convection 5 Micro-scale heat transfer- basics with applications 3 Click 6 Click or tap here to enter text. Click or tap here to enter text. 7 Click 8 Click or tap here to enter text. Click 9 Click or tap here to enter text. Click **10** Click or tap here to enter text. Click Click 11 Click or tap here to enter text. **12** Click or tap here to enter text. Click **13** Click or tap here to enter text. Click 14 Click or tap here to enter text. Click **15** Click or tap here to enter text. Click

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,	
R	U	A	N	E	С	N: Analyze; E: Evaluate; C: Create
10%	25%	30%	25%	10%	0%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1101	erence books.			
1	Analysis of heat and mass transfer , Eckert and Drake, McGraw-Hill			
2	Fundamentals of heat transfer , Grober, Erk and Grigull, McGraw-Hill			
3	Fundamentals of heat transfer, F P Incropera and D P Dewitt, Wiley			
4	Conduction heat transfer , P J Schneider, Addison-Wesley Publishing Company			
5	Radiation heat transfer , Sparrow and Cess, McGraw-Hill			
6	Thermal radiation heat transfer, R Siegel and J R Howell, Taylor & Francis			
7	Convective Heat & Mass Transfer , William Morrow Kays, Michael E. Crawford, McGraw-Hill			
8	Click or tap here to enter text.			
9	Click or tap here to enter text.			
10	Click or tap here to enter text.			

Course Outcomes (CO):

Sr.	Course Outcome Statements %weight					
CO-1	Understand multi-dimensional heat conduction with different geometries with	15				
	various application in thermal engineering					
CO-2	Analyze steady state and transient heat conduction problems of real life	30				
	Thermal systems					
CO-3	Understanding of the heat transfer through free and forced convection 25					
CO-4	Analyze radiation heat transfer problems of various thermal systems					
CO-5	Understand applications of micro-scale heat transfer	10				
CO-6	Click or tap here to enter text.	Click				
CO-7	Click or tap here to enter text.	Click				
CO-8	Click or tap here to enter text.	Click				
CO-9	Click or tap here to enter text.	Click				
CO-10	Click or tap here to enter text.	Click				

List of Practicals / Tutorials:

Click or tap here to enter text.

1	Basic experimentation on 1-D, steady state heat transfer without heat generation in different				
	coordinate system				
2	Studies on conduction heat transfer with heat generation for different Applications				
3	Performance on extended surfaces with uniform cross section area with different conducting				
	material				
4	Performance on extended surfaces with variable cross section area				
5	Performance on unsteady state heat transfer for heating and cooling of solid body				
6	Studies on heat transfer analysis on cluster of tubes (Both staggered and in-line				
	arrangement)				
7	Performance on emissivity measurement for the test plate				
8	Basic experimentation on Free and Forced convection				
9	Studies and analysis of multidimensional conduction heat transfer				
10	Studies of gray and non-gray gas radiation heat transfer in an enclosure				
11	Click or tap here to enter text.				
12	Click or tap here to enter text.				
13	Click or tap here to enter text.				
14	Click or tap here to enter text.				
15	Click or tap here to enter text.				

Sup	Supplementary learning Material:				
1	Click or tap here to enter text.				
2	Click or tap here to enter text.				
3	Click or tap here to enter text.				
4	Click or tap here to enter text.				
5	Click or tap here to enter text.				

Curriculum Revision:			
Version:	1		
Drafted on (Month-Year):	Apr-20		
Last Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):	Apr-22		